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Abstract. Fractal dimensionalitiesis, for charged polymers are calculated over a continuous
range of Bjerrum length for chains with various numbers of beadé, Drastically decreasing
values ofds, characteristic of a phase transition, are found @&screases from zero in the range

0 < » < 1 A The fractal dimensionality approaches unity as predicted by de Gesiras

(de Gennes P-G, Pincus P, Valesco R M and Brochard F 19P8ysique37 1461) close to the
onset of order. A newly developed smoothing algorithm yields a substantial improvement in the
MC results and reveals an interesting fan-shaped behaviour of exponents and prefactor components
at A slightly above zero. It also enables discernment of a non-monotonic behaviduvefsus

N atx = 0 and close to zero. Differences found in bending between short and long chains may
provide an additional explanation for the stability of benzene and the low stability of conjugated
rings of N > 6. Based on fractal concepts, monomer densities are derived at varangit is
suggested that the drastic density changes<at\0< 1 A are evidence of the first-order nature of
this phase transition.

1. Introduction

Since the concept of scaling was first introduced to the field of polymers [1], exponent
determination has become one of the main goals in polymer investigations. In short
polyelectrolyte chains, it was found that there is difficulty in calculating the exponents by
means of the usual log—log plots of the radius of gyration or end-to-end distance ersus
Using this usual method (denoted as methgdhe slopes obtained for polyelectrolytes at
variousx become higher tha@ abover = 0.5 A for (5?) and above 1.5 A fofR?). The
Bjerrum lengtht is defined as?e?/ Dk T, wherez is the charge on each ion of the chain dhd

is the dielectric constant of the solvent. Because a chain cannot be more than fully extended,
these results have no physical meaning. For a detailed explanation see [2]. Slopes higher than
2 were also reported in [3]. In [4] different slopes were obtained wkemas varied. In this

paper we attempt to overcome this difficulty by the calculation of exponents from a different
viewpoint using the fractal concept. For the first time, to the best of our knowleddeatia
dimensionality d;, of a polyelectrolyte is calculateaer a continuous range of, using the
method developed in [5-10] for self-avoiding walk (SAW) chains (denoted as method Il). In
this paper we describe how the exponents are varied as functions of both high andAow

high A we describe the exponents for bare polyelectrolyte chains and for polyelectrolyte with
added salt. At lowa, the Monte Carlo (MC) results display noise. To decrease the noise
component, we have developed a smoothing technique described in this article. Modelling
and simulation techniques are described in the next section. Fractal parameters are introduced
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in section 3. The results and smoothing technique are discussed in section 4 followed by
summary and concluding remarks in section 5.

2. Model and simulation technique

The fully charged chain, represented Myhard spherical beads on a lattice, was discussed
in detail in previous papers [11, 12]. The charge is equally distributed on a chairbefds
of diameterb = 4 A located in a cubic box. The box has a length of 2048 A and satisfies
periodic boundary conditions. An initial configuration of a polyion is chosen and the system
is permitted to relax toward an equilibrium configuration by successive random motions of the
beads. The relaxation technique of the polymeris adynamic MC scheme, involving simple flips
together with complicated crankshaft motions. After each cycle or a trial move (bead dynamics
is discussed in [13]), the electrostatic energy of the system is computed using the minimum
image approximation described in [13] and in the references therein. According to Metropolis
[14] one decides to accept or to reject the new configuration. The slow annealing Kirkpatrick
procedure [15] is used for the whole rangerofiWe decrease the temperature in stages using
the last accepted conformation from the previous temperature as a starting conformation for
the succeeding stage in the annealing procedure until we reach a low temperature. Two cases
are considered, the bare chain having no added@ait 0 M) and the Debye—Hktkel (DH)
screened chain with added salt ¢ 0 M), where the Coulombic potential is replaced by
the screened Debye-Hdkel potential assuming a uniform distribution of point ions near the
polyion. Calculations were done fo¥ = 8, 16, 32, 48, 64, 70 and 80 (at> 0.5 A).
MC simulations were carried out on IBM 3090, RS/6000 and SP/2 computers at Bar-llan
University for chain lengths between 8 and 80 beads at various values of an independent
parameten [11], the Bjerrum length, defined ase?/ DkT, where;z is the charge on each
ion of the chain and is the dielectric constant of the solvent. At room temperature for a
polyelectrolyte in water solutiory, = 7.14 A. The variation ofz, can be done by varying
each of the parameters: temperature, bead charge (partial charging or counter-ions screening
[16]) and dielectric constant [11]. For simplicity, can be thought of as a reduced inverse
temperature. In [16], the polyelectrolytes expansion was generalized to also represent neutral
polymer expansion, thus thescale can be viewed also as an expansion parameter for the
chain unfolding process. Ensemble averages were collected after rejecting the initial cycles
before relaxation. Subsequent groups of 10 000 cycles were averaged separately and averages
of the means over all groups were then calculated. A total number of 3600000 cycles was
generated for each run. To achieve equilibrium results fodthgmarameters in the vicinity of
A = 0, 40 independent runs each of 10 000 000 cycles were performed ietween 8 and
80 beads at = 0. ForA close to zero, 10 such independent runs were performed. Because
of noise in the values af; and in the values oB (see equation (4)) at low, we investigated
additional values o at smaller intervals for < 0.5 A.

In this study, an exact zero value was substituted.father thark = 10~* A as used in
our previous studies. The use of the exact zero value is especially significant for the parameters
which display sharp drops in the vicinity af= 0.

3. Fractal dimensionality from internal distances (method II)
Following the concept of polymer scaling introduced by de Gennes [17], and the fractal ideas

presented by Mandelbrot [18],feactal dimensionalityof a polymer,d;, was presented [6]
usinginternal distancesn the chain. Based on renormalization group theory arguments, it
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was shown in [6] that for neutral polymeus, is related to the end-to-end exponertiy:
v =1/d;. (1)
Then, by analogy to the mean square end-to-end distance,
Ubanhanwk (2)

where(r?) is the mean square distance of all subchaindioks in a chain ofV beads averaged
over the whole polymer chain. Thus,

(r2yzd ocn. 3)
Therefore,
Inn = d; In(r?)? + B. (4)

According to equation (4), a plot of Inas a function of Itr2)1/2 is linear with sloped
and intercepB. The(r2) values are the averagesrf collected in a vector arrai(n) [16].

The collection and averaging are done as described for the other parameters (see section 2).
Following [6], the mean square distances we use to deterdiaecording to equation (4) are

only those distances included in the ‘main rand®&/'/4 < n < 3N/4). In other words, for

thed; calculation, half of the members of th&(n) vector array are discarded, those of very
smalln and very large:.

Averages are taken over millions of chains with the same number of beads as is normally
done in dynamic MC calculations. The described method was found to be useful for fractal
dimensionality derivation for neutral chains [5—10]. Owing to the self-similar character typical
of any polymer, we anticipated that this method would also work in the case of charged
macrochains. The description below supports this anticipation. An introduction to fractal
geometry is presented in [19, 20]. Several recent papers concerning three-dimensional SAW
chain investigations are referenced in [21-30]. An interesting review on the development of
renormalization group concepts is presented in [31].
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Figure 1. Plots of Inn versus Irir2)1/2 for three examples of bare polyelectrolyte chains with
variousN andx (A). The line slopes are the fractal dimensionalities (see equation (4)).
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Figure 2. Raw data of fractal dimensionality versusk (A) at variousN for a bare polyelectrolyte
chain(C = 0). Estimated errors are the standard deviations of the line intercepts. For the raw
data, error bars are not shown because they are shorter than the markers. The inset shows plots
of di for N = 8, 32 and 80 on an expanded scale.q\) shown by full curves (calculated by
method II). Plots of 2[dIn{S2)/d InN] (i.e. 2/2vs) for N = 8, 32 and 80 (dot-dash curves) are
calculated by method,} i.e. numerical differentiation of If52) with respect to Inv. Markers are

added to associate each curve with the corresponslingxponent values calculated by method

la (see section 4.1.2) are plotted by a curve with solid dots.

4. Results and discussion

4.1. Bare polyelectrolytéC = 0)

4.1.1. Calculation of/; from internal distances. In figure 1, values of Im are plotted versus
In(r2)1/2for severalv andx. As anticipated, straight lines of high correlation (0.9998-1.0000)
were obtained in all the investigated cases. Three typical examples of such best-fit lines are
shown in figure 1. As seen from equation (4), the slopes of the straight lines are the chain
fractal dimensionalitys. The values ofi; for various N, derived as described above, are
plotted againsh in figure 2. The estimated errors if, i.e. the standard deviations of the
slopes of the lines (depicted in figure 1), are smaller than the size of the symbols used in the
plots (except foi = 0, see figure 4 and explanation at the end of section 4.1.2 and in [32]). To
check the validity of obtained results éf and B we use them to calculateg?) (according to
equations (5) and (6)) and compare with t§&) values calculated directly from the simulations

by an independent method; and B can be related t¢s?) through equation (12) of [33]:

N-1 N

()= 5 3 D 07 (5)

i=1 j=i+l
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where<ri2j> is the same a&?) (see equation (4)). Rearranging equation (4), we get

2 —2B/d
<rij):e [

li — jI% (6)

wheren = |i — j|. To calculate(r,?j) we substitute in (6) the values af and B obtained
from the polyelectrolyte simulations at variousand N. We then substitute thei2j> values
into equation (5) to calculatgs?). Over the entire range of the investigatedhe (S?) values
obtained agree within one per cent with the valuesséf that we obtained from simulations
for 32 < N < 80. ForN = 8 andN = 16 the values agree within two per cent. This
agreement confirms the validity of tdg, B and(S?) of the MC results for the whole range of
the investigatedv.

4.1.2. dy values at various.. Havlin and Ben-Avraham [9] found a constafitvalue of

1.68 for an ensemble of SAW chains generated by the enrichment technique [34]. We find
an increase i; from 1.68 to 1.75 a®V increases from eight up v < 70. It appears that

this behaviour is non-monotonic (see section 4.3.1). Allgve 70, thed; values decrease.
Calculations for NSAW chains in [2] yields a value &f = 1.66 for N — oo. This value
agrees with th§ value obtained from Flory’s exponent [35].

As A increases, the chain expands because of electrostatic repulsion. This causes an
increase in the exponent ofin equation (2) which means thatincreases and its reciprocal
ds, decreases. Figure 2 shows the decreadediiring the chain expansion from coil to rod at
all N. As ) increases, the values of the markers for srivatlecrease while separating widely.

The markers fotv > 48, however, almost coincide. This indicates that there are large size
effects for chains oV < 48, and that the exponedit is not independent a¥ as assumed by
equation (2). Alld; results obtained by method Il are equal or greater than unity and do not
display the physically impossible results for exponents obtained by the usual log—log method.

The steepest drop in valuesdfis found between = 0 andx = 1 A for all investigated
N. These drastic changes, characteristic of a phase transition, are caused by conformational
variations. The sharp decreasedinbetween, = 0 andi = 1 A in figure 2 forN > 32 is
similar to the sharp decrease in the average number of contacts shown in figures 14 and 15 of
[12]. It might be that the changes in the average number of contacts in a polymer chain cause a
drastic change inits fractal dimensionality. Alternatively, there might be a phenomenon caused
by configurational factors that has not yet been investigated. Note that these sharp changes in
the values of/; occur at lowa, far froma ~ 8 A, the range in which Brender found that the
mean straight lengtti;) exhibits another transition [36].

In figure 2 it is seen that the value &f at whichd; approaches the theoretical value of
unity predicted by de Gennesal [37] is lower for larger values a¥. For N = 80 this occurs
nearh = 2. We expect that foN — oo the theoreticad; value will be obtained at lowek.

The inset in figure 2 shows smoothed datadfor variousN for » < 0.3 A (full curves)
together with dot-dash plots of Rl In(5?)/d In N] (i.e. 2/(2vs) where the subscript s denotes
radius of gyration). The latter values are calculated by numerical differentiation (using cubic
spline approximation) of the MC [i§2) values with respect to IN. The inset shows clearly
that, similar tads, 1/vs depends oV. This similarity in the behaviour of the various exponents
supports the validity of method II. We designate the above method of exponent calculation,
i.e. the differentiation of InS?), as methodyto distinguish it from method,| which also uses
(5?) values, but as log—log lines versis The usual log—log method, yields the curve with
solid dots shown between the dot-dash derivative curves. The location of this curve between
the derivative curves, demonstrates that the usual methodeltls exponents for a chain
whose length is theneanof the investigated chain lengths rather than for an infinite chain as
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would be expected. This occurs because the slope of tl§é)Imersus InV curve varies very
slowly, i.e.d; varies slightly withV. Within the limited range oV values, this variation is not
easily seen but it is revealed by numerical differentiation locally with respect¥o Despite

this, performing linear regression on these data would yield, with a high correlation, a slope
parameter which is theeanof the slope values of the curve, and not the slope of an infinite
chain.

The mean square end-to-end exponent calculations from simulations of long chains
performed by Higgs and Orland [38] supply additional confirmation to our result ferl
at low 1.

The fractal dimensionality may also be used as a measure of the curvature of the chain.
In a rod-like configuration{R? ) is proportional toN2, i.e.v = 1. This implies, according
to equation (1), that; = 1. Configurations that are more coiled have valueg of 1. Itis
apparent in figure 2, that, at> 0, the most coiled configuration over the investigatei at
N = 8. In other words, fon. > 0, the highest values @ over the range of investigated
are forN = 8. Figure 2 resembles figure 8 of [39] in that the highest values ar¥ fer 8
with values decreasing at highat in the same order. The different behaviourdpfcurves
for chains with lowN emphasizes the size effects found previously in this charged polymer
system [16, 39].

The differences found in the chain curvatugesnd the kink fractiong [39], for various
values of N under the same physical conditions may imply, from a chemical point of view,
that reactivity of polyions varies with chain length. A reactant may find it easier to attack a
long chain rather than a short one because the longer chain is more likely to be rod-like and
have less steric hindrance. Aggregation of rod-like chains may be easier than that of bent
chains. If so, the aggregation of long charged chains is expected to be more probable than that
of short ones. The same ease of approach to a long chain may apply also to ion condensation
and, in addition, may be a cause for a screening size effect [40]. The differences in bending
between short and long chains may be an additional cause for the preference for cyclization
found in short electron-rich chains. These differences in bending may provide an additional
explanation for the stable structure of benzene consisting ef 6 carbon atoms [42]. They
might also explain the low probability for the existence of conjugated rin@é laigher than
six where the polymer chain’s strong tendency to straighten itself reduces the stability of the
cyclic structures.

Differences in chain curvature may also influence the packing structure of a system of
several polyions [43]. It would be interesting to investigate whether such differences in
curvature (at lowA) also contribute taV-dependent mobility (at low electric field) in the
gel electrophoresis of DNA [44].

As an aside, it is seen in figure 4 that the largest fluctuation it all values ofN
are found at. = 0. Fluctuations are a characteristic of phase transitions as, for example, in
superconductivity [45]. The reason may be that, near 0, there are the greatest number of
configurations with the largest variety of shapes. In fact, @t0, contacts, which are closed
configurations, exist together with open configurations. AAscreases, the closed contacts
are the first to disappear [12]. Note, however, that the maximum deviatiqs$)imnd (R?)
arenotat. = 0 butath = 4 A for N = 32 [11] and a. = 2 A for N = 80.

Itis interesting to note that, from figure 2, we see that, as a polyelectrolyte chain unfolds,
there is a rapid rise in(v = 1/d;) followed by a levelling off atv = 1. This differs from the
resultsintable VI of [46], table VIl of [47] and table Il of [48] where, for a polymer varying from
a three-dimensional SAW to a two-dimensional SAW, a trough was found betweef.6
andv = 0.75. The difference in exponent behaviour points out, as is to be expected, that the
mechanism of the chain variation is different in the two cases.



Fractals in Monte Carlo simulations of a short polyelectrolyte 241

A N=32 |
16} i
15¢ e o -
]
o o
o O oo 0
14_05 GDDD . ]
o ]
Lo
o O
13k o |
[©7aN
s
A A A
1.2 Ooch SN -
O
11F % 4 s
o A
A
O
1ol © o 0 0 45 45 o A
i ' 1 1 I i ! i
0 2 4 6 8 10 12

A

Figure 3. Values ofd; versusx (A), for a polyelectrolyte chain oV = 32 beads in various salt
concentrationg’ (mol 171).

4.2. Polyelectrolyte with added s&lf’ # 0)

At this stage of the investigation, we use the Debyéekel screening potential as a simple
qualitative method to introduce salt into the polyelectrolyte complex system. This research
tool enables us to obtain a detailed picture of the shape of the charged chains by a method less
time-consuming than that described in [13, 49].

At C # 0, exponents are obtained, to the best of our knowledge for the first time, over a
continuous range of. According to equation (4 is calculated from internal distances, with
correlation values usually close to unity. Valuesipfrersush, for various salt concentrations
are shown in figure 3. We observe a tendencydoto increase as the salt concentration
increases. Fof€ < 0.01 M, thed; values are close to those f6r= 0. Only forC = 0.1 M
andC = 1 M, are thed; values significantly higher than the values tor= 0 atA > 0.

This is caused, at each by the chain becoming more coiled with increased salt screening.
The sensitivity ofd; to salt concentration is reminiscent of the mid-range sensitivity to salt
concentration shown by the average number of kinks anid®y[11, 39]. It does not resemble

the low sensitivity to salt of the average number of contaats(figure 14 in [12]). This may
indicate thati is influenced by bonds that are stronger than the contacts, i.e. bonds that do not
open at lowa [12]. Note that forC = 1 M andN = 32, values of S?) are close to the values

for SAW chains (figure 1 in [11]), while the valuesdfare much lower than their SAW value.

Note also that with a salt concentration of only 0.1 M in the vicinity of the polymer or
approximately 102 M in the bulk [49], the chain is no longer rod-like everat- 6 A. For
single polymer chains @f > 32, this concentration may be much lower [49]. Polyelectrolytes
with even very low counter-ion concentrations, therefore, may have a tendency to avoid the
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rod-like structure. In table 2 of [40], polyelectrolytes@f= 1 M at certain values of were
shown to be equivalent to polyelectrolyteof= 0 at loweri. In other wordsaddition of salt

to polyelectrolyte solutions is equivalent to heating thdfus, the strong fluctuations af

found in the region o€ = 1 M may be similar to the strong fluctuations found in the vicinity

of A = 0 (see section 4.1.2 above and section 4.4 below). This requires further investigation.

As physical conditions change betweer: 0 andx = 1 A, a sharp decreasedh occurs
at bothC = 0 (see figure 2 above) ard # 0 (even atC = 6 M, not shown). It can be
observed from figure 3 that this decrease is greatest at I6wétralso can be observed from
the figure that folC = 0.1 M, N = 32, d; levels off at approximately 1.2. Fav = 32,

C =1M,itlevels off at 1.45 and fo€ = 2 M, it levels off close to 1.56 (not shown). Further
study is required to determine the behavioucof 0 for various other values d¥.

Over the entire range of > 0, large chains have higher repulsion because of the long-
range Coulomb interaction (each added bead is charged). Thereforeitdeoreases more
sharply, as can be seen from figure 2. Adding salt to the charged chains reduces the repulsion
due to the screening, which changes the interaction to a finite-range one. This causes the
screened polyelectrolyte chain to almost recover the SAW chain structure, as can be seen from
figure 3 and from figure 1 in [11]. We expect this recovery to be sharper at higher

In [50, 51] Wrightet al examined various proteins bound to a DNA molecule (highly
charged polyelectrolytes). Brender suggested [52] that the proteins do not have the same effect
on the bending of the DNA because the different proteins have different charge distributions.
As shown in figure 3d; is sharply dependent on salt concentration and is also extremely
sensitive to. which is charge dependent (see section 2). Just as salt screens the charge on the
polyion and induces structural changes in the chain, so too does the protein which surrounds
the DNA (section III.E in [40]). Proteins which have different charge densities, are expected,
therefore, to screen differently.

4.3. Polyelectrolyte neax = 0 (NSAW)

4.3.1.d versus atlowi—the fan-shape. We now discuss the SAW chains that correspond

to polyelectrolyte systems with = 0. To determine the behaviour of the exponénas a
function of N atx = 0, we examine its values in tiwicinity of A = 0 and denote these chains

as NSAW chainsnearly self-avoiding wallchains. The MC results fafs and —B in the

range of O< A < 0.5 A display much more noise than the results found for higher values of

A. Possible reasons for this high noise are discussed in section 4.1.2, above. To reduce the
noise, we developed a smoothing technique described in section 4.4 below. The improved MC
results, still exhibiting some noise, are shown in figure 4 where it can be seen that&=f0r

ds rises asN increases except for a slight decreas&/at 80. From the results fax = 0

alone, it is difficult to draw a conclusion as to the behavioukadt higherN. The single drop
recorded might possibly be nothing more than residual noise. Yet, the curveslightly

above zero show an increasedpfwith N up to a maximum value a¥,.x followed by slowly
decreasing values. It is clearly seen ttha value of Npax increases as. decreases toward

zera The behaviour ofi; at A close to zero an&v < 80 might be an indication that, for

A = 0, there is also a slow decreasedjrmt highN with Npax in the vicinity of N = 80. Itis
possible, however, that, at= 0, the behaviour is different and that the valu@odpproaches

a constant or perhaps continues to increase. A non-monotonic behaviour for SAW chains was
also obtained in a study of correction-to-scaling of linear polymers in three dimensions [41].
Differing from the single value of 1.68 for aN found by Havlin and Ben-Avraham [9], our
results, using the same ‘main range’ (see section 3) based on an MC method and present-day
facilities, reveal a variation of; with N. Note that, in the range of < 70 ati = 0, the
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Figure 4. Fractal dimensionalityls versusN for a polyelectrolyte chain at = 0 (SAW) and
ata (A) values in the close vicinity of = 0 (NSAW). The markers display the raw data. The
dotted curves display the smoothed data (see section 4.4). Error bars of raw data @oand for

» = 0.1 A are shown for variou8/. These are longer for highaf (see [30]). As\ increases from
zero, error bars are shorter as shownies 0.1 A. Curves are connected to guide the eye.

longer the chain, the higher the valuesiptand, as seen from figure 4, the estimated errors as
well [32]). Atx = 0.1 A, this trend for; has already reversed. The reversal occurs, therefore,
between O< A < 0.1 A where both increase and decreasd;ofersusN are seen at each

The transition between the two regimes is seen by the intersection of curegargush for

the various values of . In the inset of figure 2 this is seen for the range 680< A < 0.04 A.
Similar behaviour is found (not shown) for the intercept param@t@lefined in equation (4)).

4.3.2. Values of B versusV at lowi—the fan-shape. Figure 5 shows values ef B (defined

in equation (4)) versu®/ for variousa in the vicinity of A = 0 (NSAW). In the following

section we discuss the need for smoothing the data and explain the smoothing technique we
developed. The raw data (discrete markers), and the smoothed data (dotted curves) are shown
infigure 5. The salient feature of this graph is its resemblance to the fan-shaped graph obtained
for d; (figure 4). For long chains at = 0, the raw data does not display a clear monotonic
trend with respect tav (similar to the case af; in section 4.3.1 above).

4.4. Smoothing technique

The results from simulations fek and— B in the close vicinity ofx = 0 (0 < » < 0.5 A)
display much more noise thanis found.at 1 A. To lower the noise component, we developed
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Figure 5. Values of— B versusN for a polyelectrolyte chain at = 0 (SAW) and for various. (A)

in the vicinity of A = 0. The markers display the raw data. The dotted curves display the smoothed
data (see section 4.4). Error bars fo= 0 and forx = 0.1 A are shown for variou&/. Error bars

are longer for higheN. As X increases from zero, error bars are shorter as shown$00.1 A.

an iterative smoothing algorithm that utilizes relations (5) and (6) betwgenB and(S?).
We start the process with the raw data from the simulatiodfor B and(S?) and smooth these
data iteratively. Each smoothing iteration consists of two steps. As the first step, we perform
smoothing versus for eachN using cubic spline approximation independently on each curve
of df, —B and (5?). The smoothed new values efB andd; obtained at this step are then
substituted in equations (5) and (6). For eachhe percentage differenégr) between the
value of(S5?) calculated from equation (5) and the value obtained from the smoothed simulation
data at this step is recorded. For thealues wheré (1), < 8(1), (subscript n for new and
p for previous), the values @k, —B, and(S?) are replaced with the new smoothed values.
For i values wheré (1), > §(1)p we leaved;, —B and(S?) unchanged. In the second step
of the iteration, we repeat this process at eadbr curves ofd;, —B and(S?) versusN. For
eachN, the differences(N) between the value ofs?) calculated from equation (5) and the
value obtained from the smoothing is recorded. ForNhealues wheré(N), < §(N)p, the
values ofd;, —B and(S?) are replaced with the new smoothed values. Foralues where
8(N)n > 8(N)p we leaveds, —B and(S?) unchanged. The two-step iteration described above
is then repeated as needed until the maximum valaggffor all investigated. in the first step
and the maximum value 6{ N) for all investigatedV in the second step are below 0.5 per cent.
For NSAW, the smoothing is necessary to discern clearly even the qualitative behaviour.
For high, the qualitative behaviour is clear without smoothing. In [2], we use smoothing
with respect to. to improve the extrapolation results.
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Figure 6. Values of({$2)“~3/2 yersus. (A) for a bare polyelectrolyte chait€ = 0), with various
number of beadsy.

4.5. Density of monomers at variols

The density ofN’ polymer monomers in the volume within a sphere of radius of gyration

Ry = (§?)"/2is proportional taV'/ RS = Rg ~% and is plotted versus in figure 6. Again, as

for di, sharp decrease occurs in the range Q. < 1 A. This may be evidence for the first-
order nature of the phase transition envisaged by de Gennes for the coil-stretch transition of
polymers under ultrahigh velocity gradients [53, 54]. De Gennes'’ ‘afterthought’ in [54] refers
to [55] and references therein where experiments confirming this transition are described. For
recent papers in this subject see [56,57] and references therein. We do not expect to find
discontinuities in the vicinity ok = 0 in this first-order phase transition system because, as

is known, it is impossible to find discontinuities in simulations of finite systems.

As X increases, less contacts exist [12], therefore the probability of movement failure
because of occupied sites is reduced. The suppression of the self-avoidance or excluded
volume effects as the persistence length of the chain increases was discussed in [58] and
references therein. Despite the suppression of the self-avoidance effectsiatthggfreedom
of movement of the chain does not increase (except fess than approximately 0.3 A, not
shown). This is because the increase in the chain’s rod-like character causes an increase in the
global fraction of chain-move failures.

In figure 6 we do not observe large changes in the density in the vicinity-o8 A. This
indicates that at ~ 8 A, the phase transition [12, 36] might be a second-order transition.
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5. Summary and concluding remarks

The most important merit of this paper is the first presentation, to the best of our knowledge,

of a numerical method for evaluation of the fractal dimensionalitgver a continuous range

of A using techniques developed previously for random fractal objects. Drastically decreasing

values ofd;, characteristic of a phase transition, are found imereases from zero in the range

0 < » < 1 A. The fractal dimensionality approaches unity as predicted by de Getmaés

close to the onset of order (figure 2). The exponent behaviour is related to the mechanism of
chain expansion.

In this study, we have found large changes in the valua @i the vicinity of A = 0
both for systems o = 0 andC # 0. This means that, in this regime bf there exists
a strong sensitivity of the exponent to minor changes in physical condition as is typical of
phase transitions. Systems of neutral expanding polymers and monolayers are expected to
demonstrate similar behaviour. We have found that single polyelectrolyte chains of even very
low counter-ion concentrations hade> 1 which means that their structure is not rod-like.

Owing to the sharp drop it asa rises above zero, we have inferred that thealues
obtained from experimental measurements of neutral polymers with bulky side groups may
be found smaller than the SAW results. Because of steric repulsion, bulky side groups on a
backbone of even a neutral polymer raisto be effectively above zero. The sharp decrease
of d; in figure 2 indicates that experimental measurement of neutral polymer chain may
yield results lower than the value expected for the SAW chain.

The sharp decrease il as increases from zero may be caused by the sharp drop in
contacts. The absence of contacts abowve 0 may indicate that the polyelectrolyte problem
is similar to the directed walks problem. Note, however, that the number of contacts is small
relative to the number of kinks, which also decrease during the expansion. One would expect,
therefore, that the decrease in both contacts and kinks is responsible for the sharp changesin

Another major finding in this paper is that, far= 0, there is no singlé; value for all
investigatedV. Rather than the previously-found constant value, the behaviagr\adrsus
N atA = 0is shown to be non-monotonic. An increase witlhas been found up v = 70.

Similar behaviour at low is found for the prefactor B.

The noise in the; and— B values at low. (NSAW) obscures the behaviour with respect to
N. Extensive investigation that involves smoothing/of— B and(S?) with respect ta. and to
N simultaneously has yielded a substantial improvement in the MC results and has revealed the
interesting fan-shaped behaviour of exponents at NSAW, i2eskghtly above zero (figures 4
and 5). It also has enabled the discernment of a consistent trend, a non-monotonic behaviour
of dr andB versusN ati = 0 and close to zero. To obtain more accurate data on both charged
and uncharged chains, further investigation is required.

The exponents in the vicinity ok = 0 were calculated again using numerical
differentiation. From the results we see that the usual log—log method for exponent calculations,
method }, yields exponents for a chain whose length is tinganof the investigated chain
lengths rather than for an infinite chain as would be expected. For explanations see section4.1.2.

The transition neak = 0 from disorder to order can be considered as a kind of gas-to-
liquid transition. The transition between two ordered phasesneaB A is reminiscent of
the liquid-to-solid transition type. The phase transition atlogseems to apply to both classes
of phase transitions, thermal and structural. The phase transition in the vicinity=08 A
seems to be a geometric one. It is possible that the transition we find in this studglése
to zero is connected to breaking-up of an SAW system symmetry.

Concerning the transition from thermal disorder to order it is interesting to note that
Helgeseret al [59] showed that diffusing magnetized spheres in a plane produces aggregates
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with fractal dimensionality; that decreases with increasing magnetic moment. Pastor-Satorras
and Rubi [60] showed that diffusing clusters produces aggregatesimtitiat decreases with
increasing ratio of the magnetic dipole—dipole interactions to the temperature. In both these
cases, similar to our study; is found to decrease towards unity from its limiting value as the
system becomes more ordered. We found a sharp transitignvitnich may be found also

in these systems [59, 60] when larger clusters are investigated. In [60] different values for the
fractal dimensionality were obtained for different values\ofThis is similar to the different
values ofd; that we find for polyelectrolytes at variols.

As an aside concerning self-similarity, we suggest a possible explanation for the power
laws in the vicinity of the critical point. We believe that the dynamics of phase transitions
are very similar to the dynamics of growth processes, during which self-similar structures
described by power laws are created. The resemblance between phase transitions and growth
processes near the critical point may be seen by the growth of spin clusters in Ising models,
and the growth of the percolation clusters. The power laws reflect the fact that magnets or
fluids are self-similar near their critical points. An historical introduction to the modern theory
of critical phenomena is found in Cyril Domb’s recent monograph [59].

The large size-effect observed in our previous papers for polyelectrolyte chais{@2
has been confirmed by this investigation. Short charged macrochains have been found to be
bent more than long charged chains thereby adding a new explanation for the stability of the
benzene structure.

Investigation of the parametek for 0.01 < A < 0.5 A (NSAW) has enhanced our
understanding of exponent variation with Extension of the measurementsite< 0.01 A
and toN > 80 can much improve our understanding of behaviour at 0, the SAW chain
model, which has proved to be a useful model of the dilute solution of linear polymers in good
solvents.

Fractal dimensionality concepts have enabled the discovery of the phase transition in
the vicinity of . = 0 and its order. Using thd; values we have plotted the polymer
monomer density over a continuous rangerdior various N, and have obtained a sharp
drop. Fractal investigations contributed to the development of the smoothing method that has
enabled discernment of the fan-shaped behaviour in the vicinity-e0.
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