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Abstract. Fractal dimensionalities,df , for charged polymers are calculated over a continuous
range of Bjerrum lengthλ for chains with various numbers of beads,N . Drastically decreasing
values ofdf , characteristic of a phase transition, are found asλ increases from zero in the range
0 < λ < 1 Å. The fractal dimensionality approaches unity as predicted by de Genneset al
(de Gennes P-G, Pincus P, Valesco R M and Brochard F 1976J. Physique37 1461) close to the
onset of order. A newly developed smoothing algorithm yields a substantial improvement in the
MC results and reveals an interesting fan-shaped behaviour of exponents and prefactor components
at λ slightly above zero. It also enables discernment of a non-monotonic behaviour ofdf versus
N at λ = 0 and close to zero. Differences found in bending between short and long chains may
provide an additional explanation for the stability of benzene and the low stability of conjugated
rings ofN > 6. Based on fractal concepts, monomer densities are derived at variousλ and it is
suggested that the drastic density changes at 0< λ < 1 Å are evidence of the first-order nature of
this phase transition.

1. Introduction

Since the concept of scaling was first introduced to the field of polymers [1], exponent
determination has become one of the main goals in polymer investigations. In short
polyelectrolyte chains, it was found that there is difficulty in calculating the exponents by
means of the usual log–log plots of the radius of gyration or end-to-end distance versusN .
Using this usual method (denoted as method Ia) the slopes obtained for polyelectrolytes at
variousλ become higher than2 aboveλ = 0.5 Å for 〈S2〉 and above 1.5 Å for〈R2〉. The
Bjerrum lengthλ is defined asz2e2/DkT , wherez is the charge on each ion of the chain andD

is the dielectric constant of the solvent. Because a chain cannot be more than fully extended,
these results have no physical meaning. For a detailed explanation see [2]. Slopes higher than
2 were also reported in [3]. In [4] different slopes were obtained whenN was varied. In this
paper we attempt to overcome this difficulty by the calculation of exponents from a different
viewpoint using the fractal concept. For the first time, to the best of our knowledge, thefractal
dimensionality, df , of a polyelectrolyte is calculatedover a continuous range ofλ, using the
method developed in [5–10] for self-avoiding walk (SAW) chains (denoted as method II). In
this paper we describe how the exponents are varied as functions of both high and lowλ. At
highλ we describe the exponents for bare polyelectrolyte chains and for polyelectrolyte with
added salt. At lowλ, the Monte Carlo (MC) results display noise. To decrease the noise
component, we have developed a smoothing technique described in this article. Modelling
and simulation techniques are described in the next section. Fractal parameters are introduced
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in section 3. The results and smoothing technique are discussed in section 4 followed by
summary and concluding remarks in section 5.

2. Model and simulation technique

The fully charged chain, represented byN hard spherical beads on a lattice, was discussed
in detail in previous papers [11, 12]. The charge is equally distributed on a chain ofN beads
of diameterb = 4 Å located in a cubic box. The box has a length of 2048 Å and satisfies
periodic boundary conditions. An initial configuration of a polyion is chosen and the system
is permitted to relax toward an equilibrium configuration by successive random motions of the
beads. The relaxation technique of the polymer is a dynamic MC scheme, involving simple flips
together with complicated crankshaft motions. After each cycle or a trial move (bead dynamics
is discussed in [13]), the electrostatic energy of the system is computed using the minimum
image approximation described in [13] and in the references therein. According to Metropolis
[14] one decides to accept or to reject the new configuration. The slow annealing Kirkpatrick
procedure [15] is used for the whole range ofλ. We decrease the temperature in stages using
the last accepted conformation from the previous temperature as a starting conformation for
the succeeding stage in the annealing procedure until we reach a low temperature. Two cases
are considered, the bare chain having no added salt (C = 0 M) and the Debye–Ḧuckel (DH)
screened chain with added salt (C 6= 0 M), where the Coulombic potential is replaced by
the screened Debye–Hückel potential assuming a uniform distribution of point ions near the
polyion. Calculations were done forN = 8, 16, 32, 48, 64, 70 and 80 (atλ > 0.5 Å).
MC simulations were carried out on IBM 3090, RS/6000 and SP/2 computers at Bar-Ilan
University for chain lengths between 8 and 80 beads at various values of an independent
parameterλ [11], the Bjerrum length, defined asz2e2/DkT , wherez is the charge on each
ion of the chain andD is the dielectric constant of the solvent. At room temperature for a
polyelectrolyte in water solution,λ = 7.14 Å. The variation ofλ, can be done by varying
each of the parameters: temperature, bead charge (partial charging or counter-ions screening
[16]) and dielectric constant [11]. For simplicity,λ can be thought of as a reduced inverse
temperature. In [16], the polyelectrolytes expansion was generalized to also represent neutral
polymer expansion, thus theλ scale can be viewed also as an expansion parameter for the
chain unfolding process. Ensemble averages were collected after rejecting the initial cycles
before relaxation. Subsequent groups of 10 000 cycles were averaged separately and averages
of the means over all groups were then calculated. A total number of 3 600 000 cycles was
generated for each run. To achieve equilibrium results for thedf parameters in the vicinity of
λ = 0, 40 independent runs each of 10 000 000 cycles were performed forN between 8 and
80 beads atλ = 0. Forλ close to zero, 10 such independent runs were performed. Because
of noise in the values ofdf and in the values ofB (see equation (4)) at lowλ, we investigated
additional values ofN at smaller intervals forλ 6 0.5 Å.

In this study, an exact zero value was substituted forλ rather thanλ = 10−4 Å as used in
our previous studies. The use of the exact zero value is especially significant for the parameters
which display sharp drops in the vicinity ofλ = 0.

3. Fractal dimensionality from internal distances (method II)

Following the concept of polymer scaling introduced by de Gennes [17], and the fractal ideas
presented by Mandelbrot [18], afractal dimensionalityof a polymer,df , was presented [6]
using internal distancesin the chain. Based on renormalization group theory arguments, it
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was shown in [6] that for neutral polymers,df is related to the end-to-end exponentν by:

ν = 1/df . (1)

Then, by analogy to the mean square end-to-end distance,

〈r2
n〉 ∝ n2ν ∝ n2/df (2)

where〈r2
n〉 is the mean square distance of all subchains ofn links in a chain ofN beads averaged

over the whole polymer chain. Thus,

〈r2
n〉

1
2df ∝ n. (3)

Therefore,

ln n = df ln〈r2
n〉

1
2 +B. (4)

According to equation (4), a plot of lnn as a function of ln〈r2
n〉1/2 is linear with slopedf

and interceptB. The〈r2
n〉 values are the averages ofr2

n , collected in a vector arrayD(n) [16].
The collection and averaging are done as described for the other parameters (see section 2).
Following [6], the mean square distances we use to determinedf according to equation (4) are
only those distances included in the ‘main range’,(N/4 < n 6 3N/4). In other words, for
thedf calculation, half of the members of theD(n) vector array are discarded, those of very
smalln and very largen.

Averages are taken over millions of chains with the same number of beads as is normally
done in dynamic MC calculations. The described method was found to be useful for fractal
dimensionality derivation for neutral chains [5–10]. Owing to the self-similar character typical
of any polymer, we anticipated that this method would also work in the case of charged
macrochains. The description below supports this anticipation. An introduction to fractal
geometry is presented in [19, 20]. Several recent papers concerning three-dimensional SAW
chain investigations are referenced in [21–30]. An interesting review on the development of
renormalization group concepts is presented in [31].

Figure 1. Plots of lnn versus ln〈r2
n 〉1/2 for three examples of bare polyelectrolyte chains with

variousN andλ (Å). The line slopes are the fractal dimensionalities (see equation (4)).
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Figure 2. Raw data of fractal dimensionalitydf versusλ (Å) at variousN for a bare polyelectrolyte
chain(C = 0). Estimated errors are the standard deviations of the line intercepts. For the raw
data, error bars are not shown because they are shorter than the markers. The inset shows plots
of df for N = 8, 32 and 80 on an expanded scale ofλ (Å) shown by full curves (calculated by
method II). Plots of 2/[d ln〈S2〉/d lnN ] (i.e. 2/2νs) for N = 8, 32 and 80 (dot-dash curves) are
calculated by method Ib, i.e. numerical differentiation of ln〈S2〉 with respect to lnN . Markers are
added to associate each curve with the correspondingN . Exponent values calculated by method
Ia (see section 4.1.2) are plotted by a curve with solid dots.

4. Results and discussion

4.1. Bare polyelectrolyte(C = 0)

4.1.1. Calculation ofdf from internal distances. In figure 1, values of lnn are plotted versus
ln〈r2

n〉1/2 for severalN andλ. As anticipated, straight lines of high correlation (0.9998–1.0000)
were obtained in all the investigated cases. Three typical examples of such best-fit lines are
shown in figure 1. As seen from equation (4), the slopes of the straight lines are the chain
fractal dimensionalitydf . The values ofdf for variousN , derived as described above, are
plotted againstλ in figure 2. The estimated errors indf , i.e. the standard deviations of the
slopes of the lines (depicted in figure 1), are smaller than the size of the symbols used in the
plots (except forλ = 0, see figure 4 and explanation at the end of section 4.1.2 and in [32]). To
check the validity of obtained results ofdf andB we use them to calculate〈S2〉 (according to
equations (5) and (6)) and compare with the〈S2〉 values calculated directly from the simulations
by an independent method.df andB can be related to〈S2〉 through equation (12) of [33]:

〈S2〉 = 1

N2

N−1∑
i=1

N∑
j=i+1

〈r2
ij 〉 (5)
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where〈r2
ij 〉 is the same as〈r2

n〉 (see equation (4)). Rearranging equation (4), we get

〈r2
ij 〉 = e−2B/df |i − j |2/df (6)

wheren = |i − j |. To calculate〈r2
ij 〉 we substitute in (6) the values ofdf andB obtained

from the polyelectrolyte simulations at variousλ andN . We then substitute the〈r2
ij 〉 values

into equation (5) to calculate〈S2〉. Over the entire range of the investigatedλ, the〈S2〉 values
obtained agree within one per cent with the values of〈S2〉 that we obtained from simulations
for 32 6 N 6 80. ForN = 8 andN = 16 the values agree within two per cent. This
agreement confirms the validity of thedf , B and〈S2〉 of the MC results for the whole range of
the investigatedN .

4.1.2. df values at variousλ. Havlin and Ben-Avraham [9] found a constantdf value of
1.68 for an ensemble of SAW chains generated by the enrichment technique [34]. We find
an increase indf from 1.68 to 1.75 asN increases from eight up toN 6 70. It appears that
this behaviour is non-monotonic (see section 4.3.1). AboveN = 70, thedf values decrease.
Calculations for NSAW chains in [2] yields a value ofdf = 1.66 forN → ∞. This value
agrees with the53 value obtained from Flory’s exponent [35].

As λ increases, the chain expands because of electrostatic repulsion. This causes an
increase in the exponent ofn in equation (2) which means thatν increases and its reciprocal
df , decreases. Figure 2 shows the decrease ofdf during the chain expansion from coil to rod at
allN . Asλ increases, the values of the markers for smallN decrease while separating widely.
The markers forN > 48, however, almost coincide. This indicates that there are large size
effects for chains ofN < 48, and that the exponentdf is not independent ofN as assumed by
equation (2). Alldf results obtained by method II are equal or greater than unity and do not
display the physically impossible results for exponents obtained by the usual log–log method.

The steepest drop in values ofdf is found betweenλ = 0 andλ = 1 Å for all investigated
N . These drastic changes, characteristic of a phase transition, are caused by conformational
variations. The sharp decrease indf betweenλ = 0 andλ = 1 Å in figure 2 forN > 32 is
similar to the sharp decrease in the average number of contacts shown in figures 14 and 15 of
[12]. It might be that the changes in the average number of contacts in a polymer chain cause a
drastic change in its fractal dimensionality. Alternatively, there might be a phenomenon caused
by configurational factors that has not yet been investigated. Note that these sharp changes in
the values ofdf occur at lowλ, far fromλ ∼ 8 Å, the range in which Brender found that the
mean straight length〈ls〉 exhibits another transition [36].

In figure 2 it is seen that the value ofλ, at whichdf approaches the theoretical value of
unity predicted by de Genneset al [37] is lower for larger values ofN . ForN = 80 this occurs
nearλ = 2. We expect that forN →∞ the theoreticaldf value will be obtained at lowerλ.

The inset in figure 2 shows smoothed data ofdf for variousN for λ 6 0.3 Å (full curves)
together with dot-dash plots of 2/[d ln〈S2〉/d lnN ] (i.e. 2/(2νs) where the subscript s denotes
radius of gyration). The latter values are calculated by numerical differentiation (using cubic
spline approximation) of the MC ln〈S2〉 values with respect to lnN . The inset shows clearly
that, similar todf , 1/νs depends onN . This similarity in the behaviour of the various exponents
supports the validity of method II. We designate the above method of exponent calculation,
i.e. the differentiation of ln〈S2〉, as method Ib to distinguish it from method Ia, which also uses
〈S2〉 values, but as log–log lines versusN . The usual log–log method, Ia yields the curve with
solid dots shown between the dot-dash derivative curves. The location of this curve between
the derivative curves, demonstrates that the usual method, Ia yields exponents for a chain
whose length is themeanof the investigated chain lengths rather than for an infinite chain as
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would be expected. This occurs because the slope of the ln〈S2〉 versus lnN curve varies very
slowly, i.e.df varies slightly withN . Within the limited range ofN values, this variation is not
easily seen but it is revealed by numerical differentiation locally with respect to lnN . Despite
this, performing linear regression on these data would yield, with a high correlation, a slope
parameter which is themeanof the slope values of the curve, and not the slope of an infinite
chain.

The mean square end-to-end exponent calculations from simulations of long chains
performed by Higgs and Orland [38] supply additional confirmation to our results fordf = 1
at lowλ.

The fractal dimensionality may also be used as a measure of the curvature of the chain.
In a rod-like configuration,〈R2

N 〉 is proportional toN2, i.e. ν = 1. This implies, according
to equation (1), thatdf = 1. Configurations that are more coiled have values ofdf > 1. It is
apparent in figure 2, that, atλ > 0, the most coiled configuration over the investigatedN is at
N = 8. In other words, forλ > 0, the highest values ofdf over the range of investigatedN
are forN = 8. Figure 2 resembles figure 8 of [39] in that the highest values are forN = 8
with values decreasing at higherN in the same order. The different behaviour ofdf curves
for chains with lowN emphasizes the size effects found previously in this charged polymer
system [16, 39].

The differences found in the chain curvaturesdf and the kink fraction,g [39], for various
values ofN under the same physical conditions may imply, from a chemical point of view,
that reactivity of polyions varies with chain length. A reactant may find it easier to attack a
long chain rather than a short one because the longer chain is more likely to be rod-like and
have less steric hindrance. Aggregation of rod-like chains may be easier than that of bent
chains. If so, the aggregation of long charged chains is expected to be more probable than that
of short ones. The same ease of approach to a long chain may apply also to ion condensation
and, in addition, may be a cause for a screening size effect [40]. The differences in bending
between short and long chains may be an additional cause for the preference for cyclization
found in short electron-rich chains. These differences in bending may provide an additional
explanation for the stable structure of benzene consisting ofN = 6 carbon atoms [42]. They
might also explain the low probability for the existence of conjugated rings atN higher than
six where the polymer chain’s strong tendency to straighten itself reduces the stability of the
cyclic structures.

Differences in chain curvature may also influence the packing structure of a system of
several polyions [43]. It would be interesting to investigate whether such differences in
curvature (at lowλ) also contribute toN -dependent mobility (at low electric field) in the
gel electrophoresis of DNA [44].

As an aside, it is seen in figure 4 that the largest fluctuations indf at all values ofN
are found atλ = 0. Fluctuations are a characteristic of phase transitions as, for example, in
superconductivity [45]. The reason may be that, nearλ = 0, there are the greatest number of
configurations with the largest variety of shapes. In fact, atλ = 0, contacts, which are closed
configurations, exist together with open configurations. Asλ increases, the closed contacts
are the first to disappear [12]. Note, however, that the maximum deviations in〈S2〉 and〈R2〉
are not atλ = 0 but atλ = 4 Å for N = 32 [11] and atλ = 2 Å for N = 80.

It is interesting to note that, from figure 2, we see that, as a polyelectrolyte chain unfolds,
there is a rapid rise inν(ν = 1/df ) followed by a levelling off atν = 1. This differs from the
results in table VI of [46], table VII of [47] and table II of [48] where, for a polymer varying from
a three-dimensional SAW to a two-dimensional SAW, a trough was found betweenν = 0.6
andν = 0.75. The difference in exponent behaviour points out, as is to be expected, that the
mechanism of the chain variation is different in the two cases.
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Figure 3. Values ofdf versusλ (Å), for a polyelectrolyte chain ofN = 32 beads in various salt
concentrationsC (mol l−1).

4.2. Polyelectrolyte with added salt(C 6= 0)

At this stage of the investigation, we use the Debye–Hückel screening potential as a simple
qualitative method to introduce salt into the polyelectrolyte complex system. This research
tool enables us to obtain a detailed picture of the shape of the charged chains by a method less
time-consuming than that described in [13, 49].

At C 6= 0, exponents are obtained, to the best of our knowledge for the first time, over a
continuous range ofλ. According to equation (4),df is calculated from internal distances, with
correlation values usually close to unity. Values ofdf versusλ, for various salt concentrations
are shown in figure 3. We observe a tendency fordf to increase as the salt concentration
increases. ForC 6 0.01 M, thedf values are close to those forC = 0. Only forC = 0.1 M
andC = 1 M, are thedf values significantly higher than the values forC = 0 at λ > 0.
This is caused, at eachλ, by the chain becoming more coiled with increased salt screening.
The sensitivity ofdf to salt concentration is reminiscent of the mid-range sensitivity to salt
concentration shown by the average number of kinks and by〈S2〉 [11, 39]. It does not resemble
the low sensitivity to salt of the average number of contacts〈nt〉 (figure 14 in [12]). This may
indicate thatdf is influenced by bonds that are stronger than the contacts, i.e. bonds that do not
open at lowλ [12]. Note that forC = 1 M andN = 32, values of〈S2〉 are close to the values
for SAW chains (figure 1 in [11]), while the values ofdf are much lower than their SAW value.

Note also that with a salt concentration of only 0.1 M in the vicinity of the polymer or
approximately 10−2 M in the bulk [49], the chain is no longer rod-like even atλ > 6 Å. For
single polymer chains ofN > 32, this concentration may be much lower [49]. Polyelectrolytes
with even very low counter-ion concentrations, therefore, may have a tendency to avoid the



242 C Brender et al

rod-like structure. In table 2 of [40], polyelectrolytes ofC = 1 M at certain values ofλ were
shown to be equivalent to polyelectrolytes ofC = 0 at lowerλ. In other words,addition of salt
to polyelectrolyte solutions is equivalent to heating them. Thus, the strong fluctuations ofdf

found in the region ofC = 1 M may be similar to the strong fluctuations found in the vicinity
of λ = 0 (see section 4.1.2 above and section 4.4 below). This requires further investigation.

As physical conditions change betweenλ = 0 andλ = 1 Å, a sharp decrease indf occurs
at bothC = 0 (see figure 2 above) andC 6= 0 (even atC = 6 M, not shown). It can be
observed from figure 3 that this decrease is greatest at lowerC. It also can be observed from
the figure that forC = 0.1 M, N = 32, df levels off at approximately 1.2. ForN = 32,
C = 1 M, it levels off at 1.45 and forC = 2 M, it levels off close to 1.56 (not shown). Further
study is required to determine the behaviour ofC 6= 0 for various other values ofN .

Over the entire range ofλ > 0, large chains have higher repulsion because of the long-
range Coulomb interaction (each added bead is charged). Therefore theirdf decreases more
sharply, as can be seen from figure 2. Adding salt to the charged chains reduces the repulsion
due to the screening, which changes the interaction to a finite-range one. This causes the
screened polyelectrolyte chain to almost recover the SAW chain structure, as can be seen from
figure 3 and from figure 1 in [11]. We expect this recovery to be sharper at higherN .

In [50, 51] Wright et al examined various proteins bound to a DNA molecule (highly
charged polyelectrolytes). Brender suggested [52] that the proteins do not have the same effect
on the bending of the DNA because the different proteins have different charge distributions.
As shown in figure 3,df is sharply dependent on salt concentration and is also extremely
sensitive toλ which is charge dependent (see section 2). Just as salt screens the charge on the
polyion and induces structural changes in the chain, so too does the protein which surrounds
the DNA (section III.E in [40]). Proteins which have different charge densities, are expected,
therefore, to screen differently.

4.3. Polyelectrolyte nearλ = 0 (NSAW)

4.3.1.df versusN at lowλ—the fan-shape. We now discuss the SAW chains that correspond
to polyelectrolyte systems withλ = 0. To determine the behaviour of the exponentdf as a
function ofN atλ = 0, we examine its values in thevicinity of λ = 0 and denote these chains
as NSAW chains,nearly self-avoiding walkchains. The MC results fordf and−B in the
range of 0< λ 6 0.5 Å display much more noise than the results found for higher values of
λ. Possible reasons for this high noise are discussed in section 4.1.2, above. To reduce the
noise, we developed a smoothing technique described in section 4.4 below. The improved MC
results, still exhibiting some noise, are shown in figure 4 where it can be seen that, forλ = 0,
df rises asN increases except for a slight decrease atN = 80. From the results forλ = 0
alone, it is difficult to draw a conclusion as to the behaviour ofdf at higherN . The single drop
recorded might possibly be nothing more than residual noise. Yet, the curves forλ slightly
above zero show an increase ofdf with N up to a maximum value atNmax followed by slowly
decreasing values. It is clearly seen thatthe value ofNmax increases asλ decreases toward
zero. The behaviour ofdf at λ close to zero andN 6 80 might be an indication that, for
λ = 0, there is also a slow decrease indf at highN with Nmax in the vicinity ofN = 80. It is
possible, however, that, atλ = 0, the behaviour is different and that the value ofdf approaches
a constant or perhaps continues to increase. A non-monotonic behaviour for SAW chains was
also obtained in a study of correction-to-scaling of linear polymers in three dimensions [41].
Differing from the single value of 1.68 for allN found by Havlin and Ben-Avraham [9], our
results, using the same ‘main range’ (see section 3) based on an MC method and present-day
facilities, reveal a variation ofdf with N . Note that, in the range ofN 6 70 atλ = 0, the
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Figure 4. Fractal dimensionalitydf versusN for a polyelectrolyte chain atλ = 0 (SAW) and
at λ (Å) values in the close vicinity ofλ = 0 (NSAW). The markers display the raw data. The
dotted curves display the smoothed data (see section 4.4). Error bars of raw data forλ = 0 and for
λ = 0.1 Å are shown for variousN . These are longer for higherN (see [30]). Asλ increases from
zero, error bars are shorter as shown forλ = 0.1 Å. Curves are connected to guide the eye.

longer the chain, the higher the values ofdf (and, as seen from figure 4, the estimated errors as
well [32]). At λ = 0.1 Å, this trend fordf has already reversed. The reversal occurs, therefore,
between 0< λ < 0.1 Å where both increase and decrease ofdf versusN are seen at eachλ.
The transition between the two regimes is seen by the intersection of curves ofdf versusλ for
the various values ofN . In the inset of figure 2 this is seen for the range of 0.02< λ < 0.04 Å.
Similar behaviour is found (not shown) for the intercept parameterB (defined in equation (4)).

4.3.2. Values of−B versusN at lowλ—the fan-shape. Figure 5 shows values of−B (defined
in equation (4)) versusN for variousλ in the vicinity of λ = 0 (NSAW). In the following
section we discuss the need for smoothing the data and explain the smoothing technique we
developed. The raw data (discrete markers), and the smoothed data (dotted curves) are shown
in figure 5. The salient feature of this graph is its resemblance to the fan-shaped graph obtained
for df (figure 4). For long chains atλ = 0, the raw data does not display a clear monotonic
trend with respect toN (similar to the case ofdf in section 4.3.1 above).

4.4. Smoothing technique

The results from simulations fordf and−B in the close vicinity ofλ = 0 (0 < λ < 0.5 Å)
display much more noise than is found atλ > 1 Å. To lower the noise component, we developed
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Figure 5. Values of−B versusN for a polyelectrolyte chain atλ = 0 (SAW) and for variousλ (Å)
in the vicinity ofλ = 0. The markers display the raw data. The dotted curves display the smoothed
data (see section 4.4). Error bars forλ = 0 and forλ = 0.1 Å are shown for variousN . Error bars
are longer for higherN . As λ increases from zero, error bars are shorter as shown forλ = 0.1 Å.

an iterative smoothing algorithm that utilizes relations (5) and (6) betweendf , −B and〈S2〉.
We start the process with the raw data from the simulation fordf ,−B and〈S2〉and smooth these
data iteratively. Each smoothing iteration consists of two steps. As the first step, we perform
smoothing versusλ for eachN using cubic spline approximation independently on each curve
of df , −B and〈S2〉. The smoothed new values of−B anddf obtained at this step are then
substituted in equations (5) and (6). For eachλ, the percentage differenceδ(λ) between the
value of〈S2〉 calculated from equation (5) and the value obtained from the smoothed simulation
data at this step is recorded. For theλ values whereδ(λ)n < δ(λ)p (subscript n for new and
p for previous), the values ofdf , −B, and〈S2〉 are replaced with the new smoothed values.
For λ values whereδ(λ)n > δ(λ)p we leavedf , −B and〈S2〉 unchanged. In the second step
of the iteration, we repeat this process at eachλ for curves ofdf ,−B and〈S2〉 versusN . For
eachN , the differenceδ(N) between the value of〈S2〉 calculated from equation (5) and the
value obtained from the smoothing is recorded. For theN values whereδ(N)n < δ(N)p, the
values ofdf , −B and〈S2〉 are replaced with the new smoothed values. ForN values where
δ(N)n > δ(N)p we leavedf ,−B and〈S2〉 unchanged. The two-step iteration described above
is then repeated as needed until the maximum value ofδ(λ) for all investigatedλ in the first step
and the maximum value ofδ(N) for all investigatedN in the second step are below 0.5 per cent.

For NSAW, the smoothing is necessary to discern clearly even the qualitative behaviour.
For highλ, the qualitative behaviour is clear without smoothing. In [2], we use smoothing
with respect toλ to improve the extrapolation results.
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Figure 6. Values of〈S2〉(df−3)/2 versusλ (Å) for a bare polyelectrolyte chain(C = 0), with various
number of beads,N .

4.5. Density of monomers at variousλ

The density ofN ′ polymer monomers in the volume within a sphere of radius of gyration
Rg = 〈S2〉1/2 is proportional toN ′/R3

g = Rdf−3
g and is plotted versusλ in figure 6. Again, as

for df , sharp decrease occurs in the range 0< λ < 1 Å. This may be evidence for the first-
order nature of the phase transition envisaged by de Gennes for the coil-stretch transition of
polymers under ultrahigh velocity gradients [53, 54]. De Gennes’ ‘afterthought’ in [54] refers
to [55] and references therein where experiments confirming this transition are described. For
recent papers in this subject see [56, 57] and references therein. We do not expect to find
discontinuities in the vicinity ofλ = 0 in this first-order phase transition system because, as
is known, it is impossible to find discontinuities in simulations of finite systems.

As λ increases, less contacts exist [12], therefore the probability of movement failure
because of occupied sites is reduced. The suppression of the self-avoidance or excluded
volume effects as the persistence length of the chain increases was discussed in [58] and
references therein. Despite the suppression of the self-avoidance effects at highλ, the freedom
of movement of the chain does not increase (except forλ less than approximately 0.3 Å, not
shown). This is because the increase in the chain’s rod-like character causes an increase in the
global fraction of chain-move failures.

In figure 6 we do not observe large changes in the density in the vicinity ofλ ∼ 8 Å. This
indicates that atλ ∼ 8 Å, the phase transition [12, 36] might be a second-order transition.
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5. Summary and concluding remarks

The most important merit of this paper is the first presentation, to the best of our knowledge,
of a numerical method for evaluation of the fractal dimensionality,df over a continuous range
of λ using techniques developed previously for random fractal objects. Drastically decreasing
values ofdf , characteristic of a phase transition, are found asλ increases from zero in the range
0 < λ < 1 Å. The fractal dimensionality approaches unity as predicted by de Genneset al
close to the onset of order (figure 2). The exponent behaviour is related to the mechanism of
chain expansion.

In this study, we have found large changes in the values ofdf in the vicinity of λ = 0
both for systems ofC = 0 andC 6= 0. This means that, in this regime ofλ, there exists
a strong sensitivity of the exponent to minor changes in physical condition as is typical of
phase transitions. Systems of neutral expanding polymers and monolayers are expected to
demonstrate similar behaviour. We have found that single polyelectrolyte chains of even very
low counter-ion concentrations havedf > 1 which means that their structure is not rod-like.

Owing to the sharp drop indf asλ rises above zero, we have inferred that thedf values
obtained from experimental measurements of neutral polymers with bulky side groups may
be found smaller than the SAW results. Because of steric repulsion, bulky side groups on a
backbone of even a neutral polymer raiseλ to be effectively above zero. The sharp decrease
of df in figure 2 indicates that experimental measurement ofdf of neutral polymer chain may
yield results lower than the value expected for the SAW chain.

The sharp decrease indf asλ increases from zero may be caused by the sharp drop in
contacts. The absence of contacts aboveλ = 0 may indicate that the polyelectrolyte problem
is similar to the directed walks problem. Note, however, that the number of contacts is small
relative to the number of kinks, which also decrease during the expansion. One would expect,
therefore, that the decrease in both contacts and kinks is responsible for the sharp changes indf .

Another major finding in this paper is that, forλ = 0, there is no singledf value for all
investigatedN . Rather than the previously-found constant value, the behaviour ofdf versus
N atλ = 0 is shown to be non-monotonic. An increase withN has been found up toN = 70.
Similar behaviour at lowλ is found for the prefactor−B.

The noise in thedf and−B values at lowλ (NSAW) obscures the behaviour with respect to
N . Extensive investigation that involves smoothing ofdf ,−B and〈S2〉with respect toλ and to
N simultaneously has yielded a substantial improvement in the MC results and has revealed the
interesting fan-shaped behaviour of exponents at NSAW, i.e. atλ slightly above zero (figures 4
and 5). It also has enabled the discernment of a consistent trend, a non-monotonic behaviour
of df andB versusN atλ = 0 and close to zero. To obtain more accurate data on both charged
and uncharged chains, further investigation is required.

The exponents in the vicinity ofλ = 0 were calculated again using numerical
differentiation. From the results we see that the usual log–log method for exponent calculations,
method Ia, yields exponents for a chain whose length is themeanof the investigated chain
lengths rather than for an infinite chain as would be expected. For explanations see section 4.1.2.

The transition nearλ = 0 from disorder to order can be considered as a kind of gas-to-
liquid transition. The transition between two ordered phases nearλ = 8 Å is reminiscent of
the liquid-to-solid transition type. The phase transition at lowλ seems to apply to both classes
of phase transitions, thermal and structural. The phase transition in the vicinity ofλ = 8 Å
seems to be a geometric one. It is possible that the transition we find in this study forλ close
to zero is connected to breaking-up of an SAW system symmetry.

Concerning the transition from thermal disorder to order it is interesting to note that
Helgesenet al [59] showed that diffusing magnetized spheres in a plane produces aggregates
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with fractal dimensionalitydf that decreases with increasing magnetic moment. Pastor-Satorras
and Rubi [60] showed that diffusing clusters produces aggregates withdf that decreases with
increasing ratio of the magnetic dipole–dipole interactions to the temperature. In both these
cases, similar to our study,df is found to decrease towards unity from its limiting value as the
system becomes more ordered. We found a sharp transition indf which may be found also
in these systems [59, 60] when larger clusters are investigated. In [60] different values for the
fractal dimensionality were obtained for different values ofN . This is similar to the different
values ofdf that we find for polyelectrolytes at variousN .

As an aside concerning self-similarity, we suggest a possible explanation for the power
laws in the vicinity of the critical point. We believe that the dynamics of phase transitions
are very similar to the dynamics of growth processes, during which self-similar structures
described by power laws are created. The resemblance between phase transitions and growth
processes near the critical point may be seen by the growth of spin clusters in Ising models,
and the growth of the percolation clusters. The power laws reflect the fact that magnets or
fluids are self-similar near their critical points. An historical introduction to the modern theory
of critical phenomena is found in Cyril Domb’s recent monograph [59].

The large size-effect observed in our previous papers for polyelectrolyte chains forN 6 32
has been confirmed by this investigation. Short charged macrochains have been found to be
bent more than long charged chains thereby adding a new explanation for the stability of the
benzene structure.

Investigation of the parameterdf for 0.01 6 λ 6 0.5 Å (NSAW) has enhanced our
understanding of exponent variation withN . Extension of the measurements toλ < 0.01 Å
and toN > 80 can much improve our understanding of behaviour atλ = 0, the SAW chain
model, which has proved to be a useful model of the dilute solution of linear polymers in good
solvents.

Fractal dimensionality concepts have enabled the discovery of the phase transition in
the vicinity of λ = 0 and its order. Using thedf values we have plotted the polymer
monomer density over a continuous range ofλ for variousN , and have obtained a sharp
drop. Fractal investigations contributed to the development of the smoothing method that has
enabled discernment of the fan-shaped behaviour in the vicinity ofλ = 0.
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